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USE OF THE TENSOR PRODUCT FOR NUMERICAL WEATHER
PREDICTION BY THE FINITE ELEMENT METHOD - PART 2.

Introduction

This is the second installment of a report-pair concern-

ing implementation of tensor product factoring of coeffi- S
cient matrices in applications of the finite element method

to numerical weather prediction. It was noted in Part I

(Ref. 1) that these techniques were introduced in numerical

weather prediction by Staniforth and Mitchell (Ref. 2).
Discussed in Part 1 are applications in which the "mass"

matrix for a grid such as that shown in Fig. 1 is factored
as the tensor product of two matrices.

N 12 9
0 = 5 6 7 J8 '-

e rows

1 2 3 4

n columns

Fig. 1. Node numbering and spacing.

One of these matrices (MA) depends solely upon the nodal.

spacing in the east-west direction (ai) and the other (MB)

depends only on the north-south spacing (bi). We began with

the set of simultaneous linear equations

M w = v, <1>

where M (the "mass" matrix) is symmetric, ne x ne, and w and
v are column vectors of height ne. M and v are input quan-

tities and w is sought. The tensor product representation

of M is .

M = MB * MA, <2>

where MB and MA are tridiagonal, symmetric matrices, e x e

and n x n, respectively. (The tensor product and matrices

MA and MB are defined in Appendix A.) This representation

allowed <1> to be rewritten as

MAW MB = V, <3>
where W is n x e and the successive columns are subvectors
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of w corresponding to the rows of Fig. 1. V is also n x e

and similarly derived from v. Boundary conditions consid-

ered were a cyclic condition in the east-west direction and

either homogeneous Neumann conditions (normal derivative

zero) or nonhomogeneous Dirichlet conditions (specified

nonzero values) on the northern and southern edges.

The present report discards the cyclic east-west boundary

condition and deals with two cases:

(I) Solutions of <3> with nonhomogeneous Dirichlet con-

ditions on all four edges;

(2) Solution of Poisson's equation for the same region

with nonhomogeneous Dirichlet conditions on all four

edges.

Mass Matrix - Dirichlet Boundary Conditions

Effects of the Dirichlet boundary conditions on the solu-

tion process are most readily understood by considering the

following partitioned form of <1>:

r 1 1 M 12~r1 rbj vb <4>
PM21 M22j~U 1~

In <4> the w vector has been rearranged so that all of the
boundary values are in the subvector wb and the interior

("center") values are in we. A similar reordering has been
applied to v and M. If the boundary values of w are pre-

scribed, then wb is known and only wC remains.to be found.
Expanding the lower partition of <4> and placing the known

terms on the right gives

M22Wc = VC - M2 1wb, <5>

or, letting vc = vc - Mzlwb, we have
M22Wc = vc' <5'>

We consider now how the strategy just described can be
applied when the tensor product resolution of M has been

L used to convert <1> into <3>. In the matrix W the pre-

scribed boundary values occupy the first and last columns
and the top and bottom rows. Denote this border matrix,

including an (n-2) x (e-2) null matrix inside, by WB.
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Calculate

VB = MA WB MB <6>

and now form

V' V - VB. <7>

Now define a set of submatrices MA1, MBI, Wl, and VI

obtained from MA, MB, W, and V', respectively, by removing

the first and last columns and the top and bottom rows. The

reduced problem becomes

MAI WI MBI = Vl <8>

As described in Ref. 1, <8> may be solved by standard Gaus-

sian elimination procedures. A computer program (GAUSS4)

which carries out these calculations is listed in Appendix

B. The subroutines of GAUSS4 are designed for substitution

in the program devised by Hinsman (Ref. 5).

Poisson's Equation - Dirichlet Boundary Conditions

As noted above, Staniforth and Mitchell (Ref. 2) appear

to have been first in applying the tensor product resolution

to Poisson's equation in a numerical weather prediction

problem using the finite element method. Additional detail

is given in earlier papers by Dorr (Ref. 3) and by Lynch,

Rice, and Thomas (Ref. 4).

Finite element discretization of Poisson's equation for

the region of Fig. 1 results in a set of simultaneous linear

equations which may be written in matrix form as

K w = v, <9>

where vectors v and w are, respectively, given and unknown.

As for <1>, each has length ne and the coefficient matrix K

is ne x ne, symmetric, sparse, and block tridiagonal. K is

called the "stiffness" matrix in finite element parlance. t

It is easily shown that K is expressible as the sum of

two tensor products as follows:

K = MB * SA + SB * MA. <10> .

The new matrices SA and SB are symmetric, tridiagonal and

depend only on the a and bi, respectively. Explicit formu-

las for SA and SB are given in Appendix A.
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Using the definition of the tensor product and again con-
verting the vectors w and v into the n x e rectangular
matrices W and V, <9> may be written as

SAW MB + MA W SB = V. <11>

Before solving <11> we must first take account of the Diri-

chlet boundary conditions on the four edges of the region.

As in solving <3>, the given boundary values are in the
first and last columns and top and bottom rows of W. As

before, we let WB be an n x e matrix containing the given

boundary values, together with zeros at locations corre-

sponding to interior nodes. Calculate

VB = SA WB MB + MA WB SB, <12>

and then form

V' = V - VB. <7>

The remaining step again parallels that used when applying

the Dirichlet boundary conditions to <3>. Specifically, we

introduce submatrices MAl, MBl, SAl, SB1, WI, and VI
obtained from MA, MB, SA, SB, W, and V', respectively, by
removing the first and last columns and the top and bottom

rows. The reduced problem becomes

SAl WI MBI + MAl WI SB1 Vi. <13>

To solve <13> we first need the complete solution of the
eigenproblem

SBI pi = Ai MB1 pi, <14>
where pi is the ith eigenvector and Xi is the corresponding
eigenvalue. We write the complete solution in the form

SBI P = MBI P A, <14'>

where P is the (e-2) x (e-2) modal matrix whose columns are
the pi and A is the (diagonal) spectral matrix whose ele-
ments are the Xi. We specify that the modal matrix is nor-

malized so that

PT MB1 P = I, <15>
where I is the identity matrix of order e-2 and PT is the
transpose of P. If both sides of <13> are postmultiplied by
P and <14'> is used to replace SBl P, <13> becomes

SAl W1 MB1 P + MAl Wl MB1 P A = V1 P. <16>

Let X = W1 MBI P and U = V1 P, then <16> is equivalent to
(SAl + Xi MAl) xi = u i , i = 1, e-2, <17>
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where xi and ui are, respectively, the ith columns of X and

U. Since the coefficient matrix in <17> is tridiagonal, the
Gaussian elimination process, i.e., factoring, forward

reduction, and back-substitution, is computationally econom-

ical. The final step consists of a matrix multiplication to

obtain

W1 = X PT. <18>

Since W1 contains the w values at all interior nodes and the

boundary values were known in advance, the solution is com-

plete. A FORTRAN program (GAUSS5) which implements the ten-

sor product solution for Poisson's equation is given in
Appendix C.

Operation Counts and Storage Requirements - Poisson's Equa-
tion p

In Ref. 1 comparisons of floating point operation counts
and storage requirements were made for solutions of <1>.

Substitution of the boundary conditions considered here in

place of those considered in Ref. 1 has a negligible effect
on both operation counts and storage requirements. Accord-

ingly, no further comparison is given here for solutions of
<1>.

Solution of Poisson' s equation (<9>) using the tensor
product resolution <10> of K is more costly in terms of com-
putation and storage than the previously studied applica-

tions to <1>. In Table 1 the number of floating point oper-
ations and the required number of coefficient matrix storage

locations are compared for three different solution methods.
These are SOR (successive over-relaxation), SKY (skyline
storage and Gauss elimination), and TENSOR (the scheme

described above). A floating point operation is defined to

be one multiplication (or division) plus one addition (or
subtraction). The exact operation counts would be polynomi-
als in n and e. Only the highest degree terms are given in

the table. Since it is not possible to predict the number
of iterations per solution using SOR, the operation count
given for that algorithm is for a single iteration. In
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Table 1 a storage location corresponds to 8 bytes. For the

comparison it is assumed that each floating point number

requires 8 bytes of storage and an integer requires 4 bytes.

The storage requirement given for SOR is based on the com-

pact storage scheme described by Franke and Salinas

(Ref. 6).

TABLE 1. Operation Counts and Storage Requirements.

ALGORITHM NUMBER OF OPERATIONS NUMBER OF STORAGE LOCATIONS

PER SOLUTION FOR COEFFICIENT MATRICES

SOR 10 en (1) 13 en

SKY 2 en2  en2

TENSOR 2 en2  e2

Note: 1. Number of operations per iteration.

It is perhaps surprising to note that the number of oper-

ations for TENSOR is no fewer than for SKY. Turning atten-

tion to storage requirements reveals that for a large prob-

lem (e = n = 100, say) the SKY storage requirement for the

stiffness matrix is 8 megabytes, compared with 1 megabyte

for SOR and 80 kilobytes for TENSOR. It is this comparison

which is the compelling reason for preferring TENSOR. It is

acknowledged that there is overhead associated with the one-

time solution of the eigenvalue problem <14>, but the tri-

diagonal form of matrices SB1 and MBI makes the amount of

computation comparable with that required for a single solu- --

tion of Poisson's equation. Since two solutions of Pois-

son's equation are required at each time step, the overhead

is clearly negligible.

It is not feasible to make a definitive comparison

between the number of operations required for SOR and those

required for the other two algorithms. If the number of

iterations is less than 0.2 e, then SOR will be more econom-

ical and the storage tradeoff would need to be weighed.
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Conclusions

It has been demonstrated that Dirichlet boundary condi-
tions on all edges of the region are easily incorporated in

solution processes which use tensor product resolution of

the coefficient matrix. For very large problems the tensor

product algorithm uses much less core storage than alterna-

tive choices. The computational expense of a solution to

Poisson's equation is substantially the same for Gaussian
elimination and for the tensor product scheme. It is
expected that successive over-relaxation is almost always

more expensive.
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APPENDIX A TENSOR PRODUCT AND MATRIX DEFINITIONS

Tensor Product The tensor product of matrices C and D

may be represented in block partition form as I

c 11 c120 C13D

C*D = jc21 D c2z D C2 3

.LC31O c32 D C3 3 DJ

where the cij are the elements of C. Note that, if C and D

have dimensions r x s and t x u, respectively, the tensor

product has dimensions rt x su. _

Definitions for matrices MA and SA are given below. The

corresponding expressions for MB and SB may be obtained by

substituting "b" for "a" throughout and replacing n by e.

(Symbols aj and b i are defined in Fig. 1.)

[2a, a,) a0 0
a 2(a1+a) a7 0 

0 a2 2(a2+a3) a3
(n=4) 0 0 a3 2a3

1 1
a, a1

1i~iA 0
SA = a1  a, a2  a2

(n=4) 0 1+ a 1 a,
a2 a2- .-

1 1 .
0 --0-

a3  a3

10 4
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APPENDIX B

PROGRAM to SOLVE M w v with DIRICHLET BOUNDARY CONDITIONS

Listing: GAUSS4 FORTRAN

C MAIN PROGRAM MASS MATRIX USING TENSOR PRODUCT RESOLUTION
* C

C THIS PROGRAM IS DESIGNED TO TEST THE SCHEME (TENSOR)
C WHICH RESOLVES THE MASS MATRIX INTO A TENSOR PRODUCT IN
C ORDER TO SOLVE THE SYSTEM OF EQUATIONS M w = v.IN
C THIS PROGRAM THERE ARE DIRICHLET BOUNDARY CONDITIONS ON
C ALL 4 EDGES OF THE REGION. THE PRESCRIBED BOUNDARY
C VALUES ARE GIVEN IN THE CORRESPONDING LOCATIONS IN V.
C THE SUBROUTINES MAY BE INSERTED IN THE PROGRAM DEVISED
C BY HINSMAN.
C

IMPLICIT REAL*8(A-H O-Z)
COMMON/CM1A/NLAT N ~6NG
COMMON/CM8A Zi) B(Z 1)
COMMON AG( . G ( ZC),GAD (ZK),GBD(ZL),MA(ZM),MB(ZN)
DIMENSION Ri
READ( ) NLONG , NLAT

WRITE 6,1090)
1000 F/ MASS MATRIX - TENSOR PRODUCT RESOLUTION'

gRlE , 01)NLONG,NLAT
WRIT- , 0A
SWRITE 6 593)B ,

503 FORMAT B: ,4F3,0)1
500 FORMATC4 A: 24F3 130
1001 FORMAT( NLONG 113, LAT ='A,3kC CONSTRUCT FACTORS, GAD AND GBD, OF MASS T

CALL TRX3
WRITE 6 501)AG

501 FORMA (7 AG: ',(12F4.1))
WITE 694)BG

504 FORMA BG: ',(12F4.1))
WITE 902) GAP)

1002 FORMA /,(3X,6F7.3))
WRITE 094 GBD

1004 FORMA( GBD',/,(3X,6F7.3))
WRITE 603MA
WR~T ~ 6 MBK=  O NG . .
LON..NGREADI IV
WRITE ( +O710

C CORRECT "IHT- ND SIDE FOR DIRICHLET CONDITION
LONGM=NLONG-1
DO 2 J=2. ONGM

N Oy (J JTIOtG)- GiAD2*J-l1)*V(J-1)+GAD(2*J-2)
1 R +GAD 2" 'V 1 l1 *J D(32
2 4K =V+- (A - L+- +GAD(2*J-2)*V(L+J)2 1 + 6AD( *J+ i (L+J+ ) -GB (LATX-

CU=GBD( 3
CL=GBD(2 LATX- 1)
GBD ( 3)=O.
GBD(I2 LATX-1)=0.
D3 G( J=D NLAT

(-L)N ONG+2 -1G *N NNL+NGI-2)L+V. , ji'e*NLONG+ ID 2)D.AD(
3 V6 2NVi *NLN

1BD 2 J 2)
i  ,LN+G D 2 2"J ) o V J+ { J N L ON G )

2*G An NLO G N -)

GBD 2*LATX = CL
WRI E. 0

PERFORM LDGT FACTORING OF GAD AND GBD
CALL FACT (GADNLONG)
CALL FACT. GBD LATX)
WRITE (6,10(2 GAD
WRITE(6,1004 GBD

1Ii



C PERFORM FORWARD REDUCTION AND BACK-SUBSTITUTION USING
C FACTORS OF GAD

CALL BACKAI(GAD,V)
WRITE(6 510 V

CPERFORM FOARD REDUCTION AND BACK-SUBSTITUTION USING
C FACTORS OF GBD

CALL BACKBI(GBDV)
6 WRITE16 510 ,,vj
510 FORMAFQ 5F8.2'4
1003 FORMAT/ MA:,
1006 FORMAT J, MB:',2X.3613

STOP
C

SUBROUTINE FACTI(A,NN)C
C SUBROUTINE fACTi PERFOPMS L*D*LT'FACTORING*ON i SUBMATRI
C OF A SYMMETRIC TRIDIAGONAL MATRIX STORED IN SKYLINE FORM.
C THE SUBMATRIX IS FORMED BY OMITTING THE FIRST AND LAST
C COLUMNS AND ROWS OF THE INPUT MATRIX.
C .- INPUT VARIABLES--
C A4NWK) = INPUT MATRIX STORED IN COMPACTED FORM
C NNK =NME FEEETSBLWSLN 2N NUMBER OF COLUMNS (OR ROWS I IN INPUI MATRIJC. ( ' P  NUMBER OF ELEMENTS BELOW SKYLINE (2 NN -1J.

C -OU PUT
C A(NWK = D AND L - FACTORS OF INPUT SUBMATRIX
C.C . * T [ ..U ).........* '-, " .............. .

DIMENSION A(1)

C PERFORM L*D*LT FACTORIZATION OF STIFFNESS MATRIX
C

LONMM=NN-2

D 0=30= LOIGM1
T M9=A(2*I /A 2J-i)

2-j(=A J -T12 Mp A(2='T1
IF{A( *J)2 0,50

120 WRITE( OUT,2000)N,A(KN)

50 A 2 J+1)=T MP
200 1AT STOP - MATRIX NOT POSITIVE DEFINITE' I,

1 NONPSITIVE PIVOT FOR EQUATION ,14,//,' PIVOt =
2E20.12)
RETURN

C

C
C THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
C SUBSTITUTION USING THE FACTORS OF GAD
C

IMPLICIT REAL*8IA-H O-Z)
COMMON iCM1A/NLAT N ONG

C DIMENSON A(1),V ~ 1
C DEFINE LIMITS FOR DO-LOOPS
C

NTM=NLAT- 1
LONGM=NLONG-1
LONGMM=NLONG-2C . .

C REDUCE RIGHT-HAND-SIDE LOAD VECTOR
C

DO 10 1K= INTM
DO 8 J=3 ,LONGI

20 V(K NLONG+J)=V(K*NLONG+J)-V(K*NLONG+J-1)*A(2*J-1)
C
C DIVIDE BY DIAGONAL ELEMENTS
C

DO 40 J=1,LONGMM
40 VKNLONG J )=V(K*NLONG+J+1)/A(2*J)C
C BACK-SUBSTITUTE
C

12



DO 60 J=3 LONGML-- (K+ N) *NLONG- J*
M:=2 ( 0 "G-J +3

60 V(L1 V(L-V(1 *1)*I
100 CONTINUE

RETURN
END S

CC **-*************-*******************************'.

C

C THIS SUBROUTINE PERFORMS THE FORWARD REDUCTION AND BACK-
C SUBSTITUTION USING THE FACTORS OF GBD.
c IMPLICIT REAL*8tA-H O-Z)COMMONICMIA/NLAT N ONG

DIMENSION A(l),V(I i "

C DEFINE NEEDED INDEX VARIABLES
C

LATX=NLAT+ 1
LONGM=NLONG- 1

C REDUCE RIGHT-HAND-SIDE LOAD VECTOR
DO 100 K=2 LONGM

20 ( +J-l)?NLONG)=V(K+ (J-1)*NLONG)-V(K+(J-2)*NLONG)
1A (2 J-1)

C DIVIDE BY DIAGONAL ELEMENTS S
C

DO 40 J= NLAT
40 V(K+ (J-) NLONG)=V(K+(J-I)*NLONG)/A(2*J-2)
C
C BACK-SUBSTITUTE

DO 60 J=3,NLAT
60 V-Jj N =V

,TX J)*9NG)V(K+
N. IK+ LAT -J NL NLN G (A ((AX2(L A X  +NLG )

100 CONTINUE
RETURN

C

C
C THIS SUBROUTINE FORMS THE MASS MATRIX IN THE FORM OF A
C TENSOR PRODUCT OF THE GBD MATRIX AND THE GAD MATRIX.
C THE FIRST OF THESE IS NLAT + 1 BY NLAT + 1 SYMMETRIC
C AND TRIDIAGONAL. THE SECOND IS NLONG BY N ONG SYMMEt-
C RIC AND TRIDIAGONAL. NOTE THAT THERE ISNO CYCLIC
C BOUDARY CONDITION IN THE EAST-WEST DIRECTION. BOTH GBD
C AND GAD ARE STORED IN SKYLINE VECTOR FORM (UPPER TRIANGLE
C WITH SPACE FOR FILL-IN). INTEGER ADDRESS VECTORS MB AND
C MA ARE ALSO GENERATED.c IMPLICIT REAL*8(A-H O-Z)

COMMON/CM A 6N
COMMON/CM B( & 1)
COMMON AG( B B t AD(ZK ,GBD Z MA(Zj) MB(ZN)

C DIMENION BG LAI A NL D2
C 1GAD(3*NLONG- ,MA (LONG+I1, INL T+Z2)VL
C

LATX=NLAT+ 1
LONGM=NLONG- 1

C FIND BG = ELEMENT HEIGHT)/6.
LONQMNL NG-1
DO 2 J= NLAT

2 BG I+LONGM*(J-1))/3.

GBD I)BG)
DO NLAT

GBD -* J-.1)+BG(J))
4 GBD Ke=B =

GBD 2* T)Z. %G(NLAT)

13



GBD(2*NLAT I)BG/6.T
DO 10 J~l LONGM

10 A J)AJ/3.
C GEN1=G

GAD Z-G1
DO nc
GA? (G(J -1)+AG(J))

12 GAD KC+ GA IGLNM
GAD 2* NGM)= AG(ONM

GAD 2*LNM1 =AG LONGM)
C GENE E IRECTORY VECTORS

DO I,NLAT
16 MB 3+1 =2J

MB I=)52*(NLAT+l)
MA NLONGDO 1Jf

18 M(p*~'
MKA{fiNLONG -l*1)O2
RE TURN
END

14



APPENDIX C
PROGRAM -POISSON'S EQUATION with DIRICHLET BOUNDARY

CONDITIONS

Listing: GAUSS5 FORTRAN

C MAIN PROGRAM STIFFNESS MATRIX USING TENSOR PRODUCT
C RESOLUTION
C
C THIS PROGRAM IS DESIGNED TO TEST THE SCHEME WHICH
C RESOLVES THE STIFFNESS MATRIX INTO A SUM OF TWO TENSOR
C PRODUCTS IN ORDER TO SOLVE THE SYSTEM OF EQUATIONS
C K W = V. THERE ARE DIRICHLET BOUNDARYCONDITIONS ON
C ALL 4 EDGES OF THE REGION. THE PRESCRIBED BOUNDARY
C VALUES ARE GIVEN IN THE CORRESPONDING LOCATIONS IN V.
C THE SUBROUTINES MAY BE INSERTED IN THE PROGRAM DEVISED
C BY HINSMAN.
C

IMPLICIT REAL*8(A-HO-z)
COMMON/CM /LA O
COMMON/CM AZi B 1i
COMMON AG ( ZK)S N GBIJ(ZL),SBI.(ZL)
READ5)V NN,

LTX= tf.T+1
WITE (61090)

1000OLFORMA STIFFNESS MATRIX - TENSOR PRODUCT
WRIT 16,jOO1jhONG,NLAT

508 FORMAT :' A 24F3;0)
1001 FORMAT ( NLONG = 13 NLAT ='13 /
C CONSTRUCT FACTORS, GAl, OBt, SAl, AND WA WI TIFFNESS
C MATRIX LATX

WRITE 6591)AG
501 FORMAT ~~ AG: ,(12F4.1))

504 FORMA ( BG: ',(12F4.1))
WRITE 61902)GA.

1002 FORMA' All /,(3X,6F7.3))
* WRITE' 6 912 SAl
1012 FORMA( Al ,/,(3X,6F7.3))

WRITE 6t094 GBi,
1004 FORMA qi GBI ,3,F.)

WRITEI 615l4)SBI /(XF.)
1014 FORMA (I SB1' /,(3X ,6F7.3))
C LOAD BORDE 4ECTOR Wi.

READ (5 i)
CALL§1 O6RERW1,V)
WRI 650V

L3=Ll )*LAT
WRITE '5 6,20(Wi L) ,L=1 Li1)WRITEC 52)W1 L)bL i50 FORMAT 521 WI L f(=Ug,48.2))

WRIT 6,5 ,)X
C1 WRT 6 510 F105)

CALL 0G.DE W1V
C WRITE 6,520 (W1(L) L=A Li)

* C WRITE 65 0 ,WL LL i
CALL LTI. R 1 ,VSiG

WRITE V
WRITE 651 1 L,~
WRIT T W LULl
READI
WRITE 150)?

530 FORMAtl P: '/,(6X,3Fl2.4))
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READ (5 *)D

WRITE( 5 1)D
531 FORMAT (1l D: ',3F12.4)
C
C FORM U = VINT*P
C

LONGM=NLONG- 1
LONGMM= NLONG -2
NLATM=NLAT- 1
DO 30 L=I.NLATM
JP1= CL-1 I)NLATM
KU1= (L-1I * (NLONG-2)-1
DO 2 K=2ONGM
TEMP=O.
DO 2§ J=l NLATM
JV=J-:NLONG+KJP=JPI1+ J

8! T MP=TEMP+VfJV) *P(JP)
9 KU 1+K) =TEMP

30 CNTINUE
WRITEJ (652)U

532 FORMATI U /6C4F12.4))
CALL C

C WRITE(6,53
C PUT FINAL RESULT IN V
C

DO 40 L=1,NLATM
DO 39 K=1,LONGMM
TEMP=0.
DO 38 J=1,N TM

38 TM=TMl .. J- +)*NLATML)*U( (J- i)*LONGMM+K)9 VLNLON( r. =)TEMP
40 CONTINUE

WRITE(6,510)V
STOP
END

C

C
C THIS SUBROUTINE CLEARS THE BORDER VECTOR Wi AND
C SUBSTITUTES THE BOUNDARY VALUES FROM V.
C

IMPLICIT REAL*8(A-H O-Z)
COMMONICM1ANLAT ,6NON--
DIMENSION WI(ZQ), (ZP)
LATX=NLAT+ 1
NC= 4*NLONG
NR=4*LATX
NB=NC+NR
DO 4 J01,NB

4 Wl(J)=O. LONG
6 WION6 wg~j)=vtj

DO J= LONG
L= 3 NLQNG+J
K= TiNLONG+J

DO 1O 1.LATXL=NC+J - "LT
K=(J- 14 NLONG.1

10 W (L) =V (K)
DO 1 Rl LATX
L=NC+3 rAfX+J
K=J*NONG

12 REuL (K)

C

C
C THIS SUBROUTINE FORMS THE MATRICES GAl GB1 SAl AND SBI
C THAT ARE FACTORS IN WHE TENSOR,,PRODUCT USEb TO PORM THE
C COEFFICIENT MATRIX (STIFFNESS MATRIX) FOR THE POISSON
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C EUTON. ALL OF THESE MATRICES ARE SYMMETRIC AND
C TRIDIAGONAL.
C

IMPLICIT REAL*8(A -H O-Z)
COMMON/CM].A/NLAT ffN

*COII1MONJ CM8A IA Zi)B(1
COMO AGL~N ( A6 :SAlj~ G~lJZL),SB1(ZL)

C
LATX=NLAT+].
LONGM=NLONG- 1

C FIND BG = (ELEMENT HEIGHT)/6.U NM: NLONG- 1
DO 2 J= NL

2 BG JI=B t+NMI (-Wi3.C GENE T BI PD6B]
GB]. 1 :2.ABG 1)SB]1 BG(L
DO LAT

GB]. (K) Z. J-1).BG(J))
GB]. K'- BJ1)
SB]. Kl)= lB .1 -j +1./BG(J)

4 S]. K+1J B. I&3-
GB1~2~-~
GB]. 2*NLAT1 

Bj

SB]. 2 NLATNLA
SB]. j1 BG(NLT)
DO6 ].J

6 SB]. (3):hjj)
C FIND AG: =jELMN WIDTH)/6.

DO 1 3= LONGM
10 AG J=(

C GEE G. JAND 6*SA.
GAl A 2 G].l
SAl 11=1.IAG~l

DO J LONGM
GA2'jj:.*6GJ1)A()
GAlK1 A

12 SAl K)= ./AGJ /AG(J)
12 SAl K+1,=-l. A~-1)

GAl (2*LINGM)= -'AGONGM)
GA. 2=OGMI =AGJ (ONGM)SAl 2*LONGM)= */AG 2(NGM~
SAl 9*LONGM+11=-SAW LOaM
J2= w'NLONG -1
DO 14 3=1 3214 ALCG= SA. (J)1/6.
RE TR
END

C

SUBROUTINE MULT1(W1,V,A,B)
C
C SUBROUTINE PREMULTIPLIES Wl MATRIX BY TRUNCATED A MATRIX
C (FIRST AND LAST ROWS OMITTED), POSTMUTIPLIES PRODUCT BY
C TRUNCATED B MATRIX (FIRST A ND LAST COLUMNS OMITTED) AND
C SUBTRACTS INTERIOR ELEMENTS OF WI. FROM CORRESPONDI
C

C
IMPLICIT REAL*8 (A-H O-Z)
COMMON 1CM lA! NLA :
DIMENSION W(ZQ) ,V (Zp ,A(l),B(l)
LATX=NLAT].
LONGM= LQG-l
FCU=W1
RCUWl (3 NLONG+].)

DOj( 3 :jLONGM
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L3 N*JONG. +
FCC:A (K+ ) FCU.A K *WlW ( )+A(K3 )*W41 J'-
RCC=A (K1)*RCU.A K) *W] (L) +A (K.3 *W43 (Lii
FCU W I(i
RC = W1(L

2 W L =RC
DO~ J=2 NLG-
L=4*NL0N6+J
LL=L;LATX

KK=K- T~
Wi (LL =A *

4 W1 KK =A L A
C W~TE6, 20 W N 1 l

C2 W RITE6=LILJ
520 FO INE EDIATREU , WI',/,(3X,5F8.2))
521 FO 6f l 'F8.21

Wi ( LNG
GW C+A 21B3*Wl(2)+B(2)*Wl(NC+LATX+2)+B(5)

Wi' (N 1~ =B 3)*W (LONG-1).BC2)*W1(NC.2*LATX,2)
1+B 5).,WLONC+ T +X3~
191:rL G+2 =B LAST -2 )* 91 C2*LATXi )*B(LASTB-3)
1W, NC.2*LAT -1 +B (LAST )*~W Z(3*- G
Wl *NLONG..1 =B LA TB-2 Wl NC+3 AT- +B (LASTB-3)

i~ C+3 LAT -1. +B (LASTBWt(C)
J2=1LONG-2

Wl ~ = J+-NOS B W1J.3*NLONG)

BRL=Wi NC+2*'LATX.2)
J2=LATX-2
DO 8 J=3 J2
N =2* (3'
NCU=&C+al tJ
URC=B ND.1 *-URLe.B ND) *W1 CU).BlND+3 '*1) (CU~ 1)

*CBN~ -Bp +B ND ) *Wi (NCU+LAT)B(N.3
URL=W NC
BR =W1 NCU+LATX)
Wi NCU =URC

8 Wi NCUsLATX =BRC
Wi (1NC+LATX+, 2=W NONG+2)
Wi NC.2*LATX. )W1 C2-NLONG+i)
li NCe2*LATX+2 =Wi (2*NLONlG-2)

C Wi NCe3*LATX-1 =W1 3*NLONG-1.)

C CORRECT V
C

NLATM=NLAT-1
I- DO 10 J=3,NLATM

L=ZC.3

L TX+

DO 1 3:2,2 i
L= T+

V( V -Wl(L)

12 V

I. ~~C***** J***************************

CSUBROUTINE FFFDB (X ,E ,GA, SA)

C THIS SUBROUTINE SOLVES A SUCCESSION OF ONE-DIMENSIONSAL
C PROBLEMS. THE RELEVANT COEFFICIENT MATRIX C IS FIRST
C FORMED, THEN FACTORED, FOLLOWED BY FORWARD REDUCTION,

18



C DIVISION BY THE DIAGONAL ELEMENTS AND BACK SUBSTITUTION.
C THE PROCESS IS CARRIED OUT NLATM tIMES.
C

IMPLCITREAL*8fA-H O-Z)

NLATM= NLAT -.
LONGM=NLONG- 1
LONGMM= NLONG -2
DO 50 L=1,NLATM

C
C FORM COEFFICIENT-MATRIX C
C

c llS Z2)D*GA(2)

2 C~iS +)D*AJ2
C
C FACTOR C
C

DO 5 JG=2,J-

15
G6 TO8
7 WRIE ) J(2.J1000 VQRMATJtli TP-ATRIX NOT POSITIVE DEFTNITE'1/
I NONP IE PIVOT FOR EQUATION ,139//, PIVOt
2D20.12
STOP

C
C PERFORM FORWARD REDUCTION
C
8 J2= fL-1)*LONGMM

DO 10 J=2 LONGMMl
10 X(2 )XtJ2 +j)-X(J21.J-1)*C(2*(J-1).1)
C
C DIVIDE BY DIAGONAL ELEMENTS

CXSJ2+1) X(J2+1)/C(1)
DO2 =2 LONGM

C2= J2J)/C(2*(J-1))
C BACK-SUBSTITUTE
C

DO 14 J=2 LONGMM

RETURN
END

199
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